ROBUST Publications 2024
Below is an overview of the scientific and conference papers published by our ROBUST labs in 2024. This list is continually updated to reflect the latest contributions.
TrustworthyAI in MRI
qMRIDiffuser: Quantitative T1 Mapping of the Brain using a Denoising Diffusion Probabilistic Model (2024).
- Authors: Shishuai Wang, Hua Ma, Juan A. Hernandez-Tamames, Stefan Klein, and Dirk H.J. Poot
Direct Estimation of Quantitative MR Maps from Quantitative Transient Imaging K-space Data Using Recurrent Inference Machine (2024).
- Authors: Shishuai Wang, Juan A. Hernandez-Tamames, Laura Nunez-Gonzalez, Stefan Klein, and Dirk H.J. Poot (2024).
Preoperative Classification of Peripheral Nerve Sheath Tumors on MRI Using Radiomics (2024).
- Authors: Jansma CYMN, Wan X,Acem I, Spaanderman DJ, Visser JJ, Hanff D, Taal W, Verhoef C, Klein S, Martin E, Starmans MPA
Genius Lab
- Authors: Sara Salimzadeh, Ujwal Gadiraju
Dealing with Uncertainty: Understanding the Impact of Prognostic Versus Diagnostic Tasks on Trust and Reliance in Human-AI Decision Making (2024).
- Authors: Sara Salimzadeh, Gaole He, Ujwal Gadiraju
Understanding Stakeholders’ Perceptions and Needs Across the LLM Supply Chain (2024).
- Authors: Agathe Balayn, Lorenzo Corti, Fanny Rancourt, Fabio Casati and Ujwal Gadiraju
“Hi. I’m Molly, your virtual interviewer!” — Exploring the Impact of Race and Gender in AI-powered Virtual Interview Experiences (2024).
- Authors: S. Biswas (m), J. Jung (f), A. Unnam (m), K. Yadav (m), S. Gupta (m), U. Gadiraju
Akal Badi ya Bias: An Exploratory Study of Gender Bias in Hindi (2024).
- Authors: Rishav Hada, Safiya Husain, Varun Gumma, Harshita Diddee, Aditya Yadavalli, Agrima Seth, Nidhi Kulkarni, Ujwal Gadiraju, Aditya Vashistha, Vivek Seshadri, Kalika Bali
Opening the Analogical Portal to Explainability: Can Analogies Help Laypeople in AI-assisted Decision Making? (2024).
- Authors: Gaole He, Agathe Balayn, Stefan Buijsman, Jie Yang, Ujwal Gadiraju. Upcoming In Journal of Artificial Intelligence Research.
A.I. Robustness: a Human-Centered Perspective on Technological Challenges and Opportunities (2024).
- Authors: Andrea Tocchetti, Lorenzo Corti, Agathe Balayn, Mireia Yurrita, Philip Lippmann, Marco Brambilla, Jie Yang.
`It Is a Moving Process': Understanding the Evolution of Explainability Needs of Clinicians in Pulmonary Medicine (2024).
- Authors: Lorenzo Corti, Rembrandt Oltmans, Jiwon Jung, Agathe Balayn, Marlies Wijsenbeek, and Jie Yang.
FedTrans: Client-Transparent Utility Estimation for Robust Federated Learning (2024).
- Authors: Mingkun Yang, Ran Zhu, Qing Wang, and Jie Yang
Robust Link Prediction over Noisy Hyper-Relational Knowledge Graphs (2024).
- Authors: Weijian Yu, Jie Yang, and Dingqi Yang
Revisiting Bundle Recommendation for Intent-aware Product Bundling (2024).
- Authors: Zhu Sun, Kaidong Feng, Jie Yang, Hui Fang, Xinghua Qu, Yew Soon Ong, and Wenyuan Liu.
Nothing Comes Without Its World – Practical Challenges of Aligning LLMs to Situated Human Values through RLHF
- Authors: Anne Arzberger, Stefan Buijsman, Maria Luce Lupetti, Alessandro Bozzon, Jie Yang
Understanding Stakeholders’ Perceptions and Needs Across the LLM Supply Chain (2024).
- Authors: Balayn, A., Corti, L., Rancourt, F., Casati, F., & Gadiraju, U. (2024).
Adaptive In-Context Learning with Large Language Models for Bundle Generation (2024).
- Authors: Sun, Z., Feng, K., Yang, J., Qu, X., Fang, H., Ong, Y. S., & Liu, W.
XCrowd: Combining Explainability and Crowdsourcing to Diagnose Models in Relation Extraction (2024).
- Authors: A Smirnova, J Yang, P Cudre-Mauroux.
Akal Badi ya Bias: An Exploratory Study of Gender Bias in Hindi (2024).
- Authors: Hada, R., Husain, S., Gumma, V., Diddee, H., Yadavalli, A., Seth, A., Kulkarni, N., Gadiraju, U., Vashistha, A., Seshadri, V., & Bali, K.
An Empirical Exploration of Trust Dynamics in LLM Supply Chains (2024).
- Authors: Balayn, A., Yurrita, M., Rancourt, F., Casati, F., & Gadiraju, U.
Everything We Hear: Towards Tackling Misinformation in Podcasts (2024).
- Authors: Cherumanal, S. P., Gadiraju, U., & Spina, D.
SafeguardLab
A Scale-Invariant Diagnostic Approach Towards Understanding Dynamics of Deep Neural Networks (2024).
- Authors: Ambarish Moharil, Damian Tamburri, IndikaKumara, Willem-Jan Van Den Heuvel
Towards efficient AutoML: a pipeline synthesis approach leveraging pre-trained transformers for multimodal data (2024).
- Authors: Ambarish Moharil, Joaquin Vanschoren,Prabhant Singh, Damian Tamburri
MERAI
Assessing the agreement between privacy-preserving Llama model and human experts when labelling radiology reports for specific significant incidental findings in lung cancer screening (2024).
- Authors: F. van der Graaf, N. Antonissen, E. Scholten, M. Prokop and C. Jacobs
Deep Learning for estimating pulmonary nodule malignancy risk: How much data does AI need to reach radiologist level performance? (2024).
- Authors: B. Obreja, K. Venkadesh, W. Hendrix, Z. Saghir, M. Prokop and C. Jacobs
External validation of the Sybil risk model as a tool to identify low-risk individuals eligible for biennial lung cancer screening (2024).
- Authors: F. van der Graaf, N. Antonissen, Z. Saghir, M. Prokop and C. Jacobs
RAIL Lab
- Authors: Issa Hanou, DevinWild Thomas, Wheeler Ruml, and Mathijs De Weerdt
HealthyAI
- Authors: V. Bozgo (F), C. Roest(M), I. van Oort (F), D. Yakar (F), H. Huisman (M), M. de Rooij
AI4MRI
AI-based motion artifact severity estimation in under sampled MRI allowing for selection of appropriate reconstruction models (2024).
- Authors: Beljaards, Laurens Pezzotti, Nicola Rao, Chinmay Doneva, Mariya van Osch, Matthias J. P. Staring, Marius
TAIM
Measuring the benefit of increased transparency and control in news recommendation (2024).
- Authors: NavaTintarev, Bart P. Knijnenburg, Martijn C. Willemsen
Does spatio-temporal information benefit the video summarization task?
- Authors: Ganesh,A., Popa, M., Odijk, D., & Tintarev, N. (2024).
Bridging the Transparency Gap: Exploring Multi-Stakeholder Preferences for Targeted Advertisement Explanations (2024).
- Authors: Zilbershtein, D., Barile, F., Odijk, D., & Tintarev, N.
Estimating the Hessian Matrix of Ranking Objectives for Stochastic Learning to Rank with Gradient Boosted Trees (2024).
- Authors: Kang, J., Rijke, M.D., & Oosterhuis, H. (2024).
AI for Parkinson
A generalisable and open-source algorithm for real-life monitoring of tremor in Parkinson’s disease (2024).
- Authors: Timmermans, N. et al.
Validity and reliability of wrist sensor-based measures of the arm swing during free-living gait in Parkinson’s disease (2024).
- Authors: Post, E. et al.
The sound of Parkinson's disease: A model of audible bradykinesia (2024).
- Authors: de Graaf, Debbie, et al.
FEPLab
Riemannian Black Box Variational Inference (2024).
- Authors: Mykola Lukashchuk, Wouter W. L. Nuijten,Dmitry Bagaev, Ismail Șenöz, Bert de Vries
Node Classificationsin Random Trees (2024).
- Authors: W.W.L. Nuijten, V. Menkovski, 2024 Symposium of Intelligent Data Analysis
Reactive Environments for Active Inference with RxEnvironments.jl (2024).
- Authors: Wouter W. L. Nuijten, Bert de Vries
Online Structure Learning with Dirichlet Processes through Message Passing (2024).
- Authors: Bart van Erp, Wouter W. L. Nuijten, Bert de Vries
GraphPPL.jl: A Probabilistic Programming Language for Graphical Models (2024).
- Authors: Wouter W. L. Nuijten, Dmitry Bagaev, Bert de Vries
Q-conjugate Message Passing for Efficient Bayesian Inference (2024).
- Authors: Mykola Lukashchuk, Ismail Șenöz, Bert de Vries
CARA Lab
Attenuation artifact localization and severity classification in coronary OCT using mixed image representations (2024).
- Authors: P. Cancian, S. Saitta, X. Gu, R.L.M. van Herten, T.J. Luttikholt, J.Thannhauser, R.H.J.A. Volleberg, R.G.A. van der Waerden, J.L. van der Zande, C.I. Sánchez, B. van Ginneken, N. van Royen, I. Išgum
Deep learning based multi class semantic segmentation of intra coronary optical coherence tomography (2024).
- Authors: Rick H.J.A. Volleberg, MD, Ruben G.A. van der Waerden, MSc, Thijs J.Luttikholt, MSc, Pierandrea Cancian, MSc, Joske van der Zande, MSc, Jos Thannhauser, PhD, Clara I. Sánchez, PhD, Bram van Ginneken, PhD, Ivana Išgum, PhD, Niels van Royen, MD PhD
Automated Analysis of Intracoronary Optical CoherenceTomography Images through Deep Learning (2024).
- Authors: R.G.A. van der Waerden, T.J. Luttikholt, J.Thannhauser, R.H.J.A. Volleberg, C.I. Sánchez, B. van Ginneken, I. Išgum, N.van Royen
FAIR Lab
Deep Unfolding for Sparse Distance Recovery in PMCW MIMO Automotive Radar (2024).
- Authors: Overdevest, J., Ji, J., Koppelaar, A. G. C., Pandharipande, A., Belt, H. J. W., & van Sloun, R. J. G.
Score-based Generative Modeling for Interference Mitigation in Automotive FMCW Radar (2024).
- Authors: Wei, X., Overdevest, J., Li, J., Youn, J., Ravindran, S., & van Sloun, R. J. G.
Interference Mitigation Evaluation Methodology for Automotive Radar (2024).
- Authors: Youn, J., Li, J., Wu, R., & Overdevest, J.
Model-Based Diffusion for Mitigating Automotive Radar Interference (2024).
- Authors: Overdevest, J., Wei, X., van Gorp, H., & van Sloun, R. J. G.
Performance Evaluation and Analysis of Thresholding-Based Interference Mitigation for Automotive Radar Systems (2024).
- Authors: Li, J., Youn, J., Wu, R., Overdevest, J., & Sun, S.
MIMO Digital Radar Processing with Spatial Nulling for Self-Interference Mitigation (2024).
- Authors: Stagnaro, P., Pandharipande, A., Overdevest, J., & Joudeh, H.
Signal Reconstruction for FMCW Radar Interference Mitigation Using Deep Unfolding (2024).
- Authors: Overdevest, J., Koppelaar, A. G. C., Bekooij, M. J. G., Youn, J., & van Sloun, R. J. G.
IEEE RADAR: “Fusion Model Using a Neural Network and MLE for a Single Snapshot DOA Estimation with Imperfection Mitigation
- Authors: MLL De Oliveira, MJG Bekooij
IEEE SENSORS: “MIMO Digital Radar Processing with Spatial Nulling for Self-Interference Mitigation
- Authors: Stagnaro, P., Pandharipande, A., Overdevest, J. & Joudeh, H.
ICASSP 2023: SIGNAL RECONSTRUCTION FOR FMCW RADAR INTERFERENCE MITIGATION USING DEEP UNFOLDING
- Authors: J. Overdevest, A.G.C. Koppelaar, M.J.G. Bekooij, J. Youn, R.J.G. van Sloun
Neurally-Augmented Deep Unfolding for Automotive Radar Interference Mitigation (2024).
- Authors: Overdevest, J., Koppelaar, A. G. C., Youn, J., Wei, X., & Van Sloun, R. J. G.