News
ROBUST Publications 2024

ROBUST Publications 2024

November 29, 2024
Impact
Written by
ICAI
Share
Linkedin

Below is an overview of the scientific and conference papers published by our ROBUST labs in 2024. This list is continually updated to reflect the latest contributions.

TrustworthyAI in MRI

qMRIDiffuser: Quantitative T1 Mapping of the Brain using a Denoising Diffusion Probabilistic Model (2024).

-         Authors: Shishuai Wang, Hua Ma, Juan A. Hernandez-Tamames, Stefan Klein, and Dirk H.J. Poot

Direct Estimation of Quantitative MR Maps from Quantitative Transient Imaging K-space Data Using Recurrent Inference Machine (2024).

-         Authors: Shishuai Wang, Juan A. Hernandez-Tamames, Laura Nunez-Gonzalez, Stefan Klein, and Dirk H.J. Poot (2024).

Preoperative Classification of Peripheral Nerve Sheath Tumors on MRI Using Radiomics (2024).

-         Authors: Jansma CYMN, Wan X,Acem I, Spaanderman DJ, Visser JJ, Hanff D, Taal W, Verhoef C, Klein S, Martin E, Starmans MPA

Genius Lab

When in Doubt! Understanding the Role of Task Characteristics on Peer Decision-Making with AI Assistance (2024).

-          Authors: Sara Salimzadeh, Ujwal Gadiraju

Dealing with Uncertainty: Understanding the Impact  of Prognostic Versus Diagnostic Tasks on Trust and Reliance in Human-AI  Decision Making (2024).

-         Authors: Sara Salimzadeh, Gaole He, Ujwal Gadiraju

Understanding Stakeholders’ Perceptions and Needs Across the LLM Supply Chain (2024).

-         Authors: Agathe Balayn, Lorenzo Corti, Fanny  Rancourt, Fabio Casati and Ujwal Gadiraju

“Hi. I’m Molly, your virtual interviewer!” —  Exploring the Impact of Race and Gender in AI-powered Virtual Interview  Experiences (2024).

-         Authors: S. Biswas (m), J. Jung (f), A. Unnam (m),  K. Yadav (m), S. Gupta (m), U. Gadiraju

Akal  Badi ya Bias: An Exploratory Study of Gender Bias in Hindi (2024).

-         Authors: Rishav Hada, Safiya Husain, Varun Gumma,  Harshita Diddee, Aditya Yadavalli, Agrima Seth, Nidhi Kulkarni, Ujwal  Gadiraju, Aditya Vashistha, Vivek Seshadri, Kalika Bali

Opening the Analogical Portal to Explainability: Can Analogies Help Laypeople in AI-assisted Decision Making? (2024).

-         Authors: Gaole He, Agathe Balayn, Stefan Buijsman,  Jie Yang, Ujwal Gadiraju. Upcoming In Journal of Artificial Intelligence  Research.

A.I. Robustness: a Human-Centered Perspective on Technological Challenges and Opportunities (2024).

-         Authors: Andrea Tocchetti, Lorenzo Corti, Agathe  Balayn, Mireia Yurrita, Philip Lippmann, Marco Brambilla, Jie Yang.

`It Is a Moving Process': Understanding the Evolution of Explainability Needs of Clinicians in Pulmonary Medicine (2024).

-         Authors: Lorenzo Corti, Rembrandt Oltmans, Jiwon  Jung, Agathe Balayn, Marlies Wijsenbeek, and Jie Yang.

FedTrans: Client-Transparent Utility Estimation for Robust Federated Learning (2024).

-         Authors: Mingkun Yang, Ran Zhu, Qing Wang, and Jie  Yang

Robust Link Prediction over Noisy Hyper-Relational  Knowledge Graphs (2024).

-         Authors: Weijian Yu, Jie Yang, and Dingqi Yang

Revisiting Bundle Recommendation for Intent-aware  Product Bundling (2024).

-         Authors: Zhu Sun, Kaidong Feng, Jie Yang, Hui Fang,  Xinghua Qu, Yew Soon Ong, and Wenyuan Liu.

Nothing Comes Without Its World – Practical  Challenges of Aligning LLMs to Situated Human Values through RLHF

-         Authors: Anne Arzberger, Stefan Buijsman, Maria Luce  Lupetti, Alessandro Bozzon, Jie Yang

Understanding Stakeholders’ Perceptions and Needs  Across the LLM Supply Chain (2024).

-         Authors: Balayn, A., Corti, L., Rancourt, F.,  Casati, F., & Gadiraju, U. (2024).

Adaptive In-Context Learning with Large Language Models for Bundle Generation (2024).

-         Authors: Sun, Z., Feng, K., Yang, J., Qu, X., Fang,  H., Ong, Y. S., & Liu, W.

XCrowd: Combining Explainability and Crowdsourcing  to Diagnose Models in Relation Extraction (2024).

-         Authors: A Smirnova, J Yang, P Cudre-Mauroux.

Akal Badi ya Bias: An Exploratory Study of Gender  Bias in Hindi (2024).

-         Authors: Hada, R., Husain, S., Gumma, V., Diddee,  H., Yadavalli, A., Seth, A., Kulkarni, N., Gadiraju, U., Vashistha, A.,  Seshadri, V., & Bali, K.

An Empirical Exploration of Trust Dynamics in LLM  Supply Chains (2024).

-         Authors: Balayn, A., Yurrita, M., Rancourt, F.,  Casati, F., & Gadiraju, U.

Everything We Hear: Towards Tackling Misinformation  in Podcasts (2024).

-         Authors: Cherumanal, S. P., Gadiraju, U., &  Spina, D.

SafeguardLab

A Scale-Invariant Diagnostic Approach Towards Understanding Dynamics of Deep Neural Networks (2024).

-       Authors: Ambarish Moharil, Damian Tamburri, IndikaKumara, Willem-Jan Van Den Heuvel

Towards efficient AutoML: a pipeline synthesis approach leveraging pre-trained transformers for multimodal data (2024).

-       Authors: Ambarish Moharil, Joaquin Vanschoren,Prabhant Singh, Damian Tamburri

 

MERAI

Assessing the agreement between privacy-preserving  Llama model and human experts when labelling radiology reports for specific significant incidental findings in lung cancer screening (2024).

-         Authors: F.  van der Graaf, N. Antonissen, E. Scholten, M. Prokop and C. Jacobs

Deep Learning for estimating pulmonary nodule malignancy risk: How much data does AI need to reach radiologist level performance? (2024).

-         Authors: B. Obreja, K. Venkadesh, W. Hendrix, Z.  Saghir, M. Prokop and C. Jacobs

External validation of the Sybil risk model as a tool to identify low-risk individuals eligible for biennial lung cancer screening (2024).

-         Authors: F. van der Graaf, N. Antonissen, Z. Saghir, M. Prokop and C. Jacobs

RAIL Lab

Replanning in Advance for Instant Delay Recovery in Multi-Agent Applications: ReroutingTrains in a Railway Hub (2024)

-       Authors: Issa Hanou, DevinWild Thomas, Wheeler Ruml, and Mathijs De Weerdt

 

HealthyAI

Prostate MRI and artificial intelligence during active surveillance: should we jump on the bandwagon? (2024).

-       Authors: V. Bozgo (F), C. Roest(M), I. van Oort (F), D. Yakar (F), H. Huisman (M), M. de Rooij

AI4MRI

AI-based motion artifact severity estimation in under sampled MRI allowing for selection of appropriate reconstruction models (2024).

-       Authors: Beljaards, Laurens Pezzotti, Nicola Rao, Chinmay Doneva, Mariya van Osch, Matthias J. P. Staring, Marius

 

TAIM

Measuring the benefit of increased transparency and control in news recommendation (2024).

-       Authors: NavaTintarev, Bart P. Knijnenburg, Martijn C. Willemsen

Does spatio-temporal information benefit the video summarization task?

-       Authors: Ganesh,A., Popa, M., Odijk, D., & Tintarev, N. (2024).

Bridging the Transparency Gap: Exploring Multi-Stakeholder Preferences for Targeted Advertisement Explanations (2024).

-       Authors: Zilbershtein, D., Barile, F., Odijk, D., & Tintarev, N.

Estimating the Hessian Matrix of Ranking Objectives for Stochastic Learning to Rank with Gradient Boosted Trees (2024).

-      Authors: Kang, J., Rijke, M.D., & Oosterhuis, H. (2024).

AI for Parkinson

A generalisable and open-source algorithm for  real-life monitoring of tremor in Parkinson’s disease (2024).

-         Authors: Timmermans, N. et al.

Validity and reliability of wrist sensor-based  measures of the arm swing during free-living gait in Parkinson’s disease (2024).

-         Authors: Post, E. et al.

The sound of Parkinson's disease: A model of audible bradykinesia (2024).

-         Authors: de  Graaf, Debbie, et al.

FEPLab

Riemannian Black Box Variational Inference (2024).

-       Authors: Mykola Lukashchuk, Wouter W. L. Nuijten,Dmitry Bagaev, Ismail Șenöz, Bert de Vries

Node Classificationsin Random Trees (2024).

-       Authors: W.W.L. Nuijten, V. Menkovski, 2024 Symposium of Intelligent Data Analysis

Reactive Environments  for Active Inference with RxEnvironments.jl (2024).

-         Authors: Wouter W. L. Nuijten, Bert de Vries

Online Structure Learning with Dirichlet Processes through Message Passing (2024).

-         Authors: Bart van Erp, Wouter W.  L. Nuijten, Bert de Vries

GraphPPL.jl: A Probabilistic  Programming Language for Graphical Models (2024).

-         Authors: Wouter W. L. Nuijten, Dmitry Bagaev, Bert de Vries

Q-conjugate  Message Passing for Efficient Bayesian Inference (2024).

-         Authors: Mykola Lukashchuk, Ismail Șenöz, Bert de Vries

CARA Lab

Attenuation artifact localization and severity classification in coronary OCT using mixed image representations (2024).

-       Authors: P. Cancian, S. Saitta, X. Gu, R.L.M. van Herten, T.J. Luttikholt, J.Thannhauser, R.H.J.A. Volleberg, R.G.A. van der Waerden, J.L. van der Zande, C.I. Sánchez, B. van Ginneken, N. van Royen, I. Išgum

Deep learning based multi class semantic segmentation of intra coronary optical coherence tomography (2024).

-       Authors: Rick H.J.A. Volleberg, MD, Ruben G.A. van der Waerden, MSc, Thijs J.Luttikholt, MSc, Pierandrea Cancian, MSc, Joske van der Zande, MSc, Jos Thannhauser, PhD, Clara I. Sánchez, PhD, Bram van Ginneken, PhD, Ivana Išgum, PhD, Niels van Royen, MD PhD

Automated Analysis of Intracoronary Optical CoherenceTomography Images through Deep Learning (2024).

-      Authors: R.G.A. van der Waerden, T.J. Luttikholt, J.Thannhauser, R.H.J.A. Volleberg, C.I. Sánchez, B. van Ginneken, I. Išgum, N.van Royen

FAIR Lab

Deep Unfolding for Sparse Distance Recovery in PMCW  MIMO Automotive Radar (2024).

-         Authors: Overdevest,  J., Ji, J., Koppelaar, A. G. C., Pandharipande, A., Belt, H. J. W., & van  Sloun, R. J. G.

Score-based Generative  Modeling for Interference Mitigation in Automotive FMCW Radar (2024).

-        Authors: Wei, X., Overdevest, J., Li, J., Youn, J., Ravindran, S., & van  Sloun, R. J. G.

Interference Mitigation Evaluation Methodology for  Automotive Radar (2024).

-         Authors: Youn, J., Li, J., Wu, R., & Overdevest,  J.

Model-Based Diffusion for  Mitigating Automotive Radar Interference (2024).

-        Authors: Overdevest, J., Wei, X., van Gorp, H., & van Sloun, R. J. G.

Performance Evaluation and Analysis of  Thresholding-Based Interference Mitigation for Automotive Radar Systems (2024).

-         Authors: Li, J., Youn, J., Wu, R., Overdevest, J.,  & Sun, S.

MIMO Digital Radar Processing with Spatial Nulling  for Self-Interference Mitigation (2024).

-         Authors: Stagnaro, P., Pandharipande, A., Overdevest, J., & Joudeh, H.

Signal Reconstruction for FMCW Radar Interference  Mitigation Using Deep Unfolding (2024).

-         Authors: Overdevest,  J., Koppelaar, A. G. C., Bekooij, M. J. G., Youn, J., & van Sloun, R. J.  G.

IEEE RADAR: “Fusion Model Using a Neural Network and  MLE for a Single Snapshot DOA Estimation with Imperfection Mitigation

-         Authors: MLL De  Oliveira, MJG Bekooij

IEEE SENSORS: “MIMO Digital Radar Processing with  Spatial Nulling for Self-Interference Mitigation

-         Authors: Stagnaro,  P., Pandharipande, A., Overdevest, J. & Joudeh, H.

ICASSP 2023: SIGNAL RECONSTRUCTION FOR FMCW RADAR  INTERFERENCE MITIGATION USING DEEP UNFOLDING

-         Authors: J.  Overdevest, A.G.C. Koppelaar, M.J.G. Bekooij, J. Youn, R.J.G. van Sloun

Neurally-Augmented  Deep Unfolding for Automotive Radar Interference Mitigation (2024).

-         Authors: Overdevest,  J., Koppelaar, A. G. C., Youn, J., Wei, X., & Van Sloun, R. J. G.

 

 

 

Newsletter

Stay in the loop

Oops! Something went wrong while submitting the form.